Respuesta :
Answer:
[tex]f(x) = \frac{9x}{3}[/tex]
[tex]f(x) = \frac{27x}{9}[/tex]
Step-by-step explanation:
Any function [tex]f(x) = \frac{bx}{a}[/tex], in which [tex]\frac{b}{a} = 3[/tex] is a tripling function, in which the value of f(x) is tripled whenever x changes by 1.
So
[tex]f(x) = \frac{9x}{3}[/tex]
[tex]f(x) = \frac{27x}{9}[/tex]
Functions can be represented using equations.
The tripling functions are: [tex]\mathbf{g(x) = (log_3(27))^x}[/tex] and [tex]\mathbf{h(x) = (\frac{12}{4})^x}[/tex]
The function is given as:
[tex]\mathbf{f(x) = 3^x}[/tex]
To do this, we simply express 3 in another form
Using logarithms, we have:
[tex]\mathbf{3=log_3(27)}[/tex]
Substitute [tex]\mathbf{3=log_3(27)}[/tex] in [tex]\mathbf{f(x) = 3^x}[/tex]
So, we have:
[tex]\mathbf{g(x) = (log_3(27))^x}[/tex]
Also, we can express 3 as 12/4
So, we have:
[tex]\mathbf{h(x) = (\frac{12}{4})^x}[/tex]
Hence, the distinct tripling functions are:
[tex]\mathbf{g(x) = (log_3(27))^x}[/tex] and [tex]\mathbf{h(x) = (\frac{12}{4})^x}[/tex]
Read more about functions at:
https://brainly.com/question/12431044