Respuesta :
For this case we have the following equation:
[tex]2m + \frac {7} {4} (\frac {3} {4} m- \frac {5} {2}) = \frac {3} {32} + \frac {1} {3} m[/tex]
We apply distributive property on the left side of the equation:
[tex]2m + \frac {21} {16} m- \frac {35} {8} = \frac {3} {32} + \frac {1} {3} m[/tex]
We add similar terms from the left side:
[tex]\frac {53} {16} m- \frac {35} {8} = \frac {3} {32} + \frac {1} {3} m[/tex]
Add[tex]\frac {35} {8}[/tex]to both sides:
[tex]\frac {53} {16} m = \frac {3} {32} + \frac {1} {3} m + \frac {35} {8}[/tex]
We subtract [tex]\frac {1} {3}[/tex] m from both sides:
[tex]\frac {53} {16} m- \frac {1} {3} m = \frac {3} {32} + \frac {35} {8}\\\frac {143} {48} m = \frac {1144} {256}\\143m = \frac {1144 * 48} {256}[/tex]
We simplify:
[tex]143m = \frac {54912} {256}\\143m = \frac {13728} {64}\\143m = \frac {3432} {16}\\143m = \frac {858} {4}\\143m = \frac {429} {2}[/tex]
We divide between 143 on both sides:
[tex]m = \frac {429} {2 * 143}\\m = \frac {429} {286}\\m = \frac {33} {22}\\m = \frac {3} {2}[/tex]
Answer:
[tex]m = \frac {3} {2}[/tex]