20. An electron with total energy 5 eV approaches a potential barrier of height 20 eV. If the probability that the electron tunnels across the barrier is 0.03, what is the width L of the barrier? a. 0.0116 nm b. 0.116 nm c. 1.16 nm d. 11.6 nm e. 116 nm Spring 2009 21. Define K UE

Respuesta :

Answer:

The width L of the barrier is b. 0.116nm

Explanation:

This is a case of tunnel effect when the probability is less than one.

First of all you find all the information the problem gives you:

Electron's total energy E=5eV

Height of potential barrier U=20eV

Crossing Probability T=0.03

Width of the barrier L=unknown

Then you need to find the equations to use in cases in which the probability is less than 0, so you have:

[tex]T=Ge^{-2kL}[/tex]

[tex]G=16\frac{E}{U}(1-\frac{E}{U})[/tex]

[tex]k=\frac{\sqrt{2m(U-E)}}{h}[/tex] where m is the mass of the electron, [tex]m=9.11*10^{-31}Kg[/tex], and h is the Planck constant, [tex]h=1.054*10^{-34}J.s[/tex]

First we find G, we have:

[tex]G=16(\frac{5.0eV}{20eV})(1-\frac{5.0eV}{20eV})[/tex]

[tex]G=4(1-0.25)=3[/tex]

Now, to solving k, we need to find the difference (U-E) :

U - E = 20eV - 5eV = 15eV

[tex]15eV*\frac{1.60218*10^{-19}J}{1eV} =2.403*10^{-18}J[/tex]

Then, we can find k:

[tex]k=\frac{\sqrt{2m(U-E)}}{h}[/tex]

[tex]k=\frac{\sqrt{2(9.11*10^{31}kg)(2.403*10^{-18}J)}}{1.054*10^{-34}\frac{J}{s}}[/tex]

[tex]k=1.98*10^{10}[/tex]

Finally, we solve for L the probability equation T:

[tex]T=Ge^{-2kL}[/tex]

[tex]\frac{T}{G}=e^{-2kL}[/tex]

[tex]ln(\frac{T}{G})=ln(e^{-2kL})[/tex]

[tex]ln(\frac{T}{G})=-2kL[/tex]

[tex]L=\frac{ln(\frac{T}{G})}{-2k}[/tex]

And replacing values for T, G and k, we can find the width of the barrier:

[tex]L=\frac{ln(\frac{0.03}{3})}{-2(1.98*10^{10})}m[/tex]

[tex]L=1.16*10^{-10}m*\frac{1*10^{9}nm}{1m}[/tex]

L=0.116nm