Answer:
Step-by-step explanation:
u = 45
v = 30
Angle between them, θ = 5π / 6 = 150°
(a) The formula for the dot product is given by
[tex]\overrightarrow{u}.\overrightarrow{v}= u v Cos\theta[/tex]
[tex]\overrightarrow{u}.\overrightarrow{v}= 45 \times 30 \times Cos150[/tex]
[tex]\overrightarrow{u}.\overrightarrow{v}= -1169.13[/tex]
(b) [tex]\overrightarrow{u}=Cos\frac{\pi }{3}\widehat{i}+Sin\frac{\pi }{3}\widehat{j}[/tex]
[tex]\overrightarrow{u}=0.5\widehat{i}+0.866\widehat{j}[/tex]
[tex]\overrightarrow{v}=Cos\frac{2\pi }{3}\widehat{i}+Sin\frac{2\pi }{3}\widehat{j}[/tex]
[tex]\overrightarrow{v}=-0.707\widehat{i}+0.707\widehat{j}[/tex]
Let the angle between them is θ
The formula in terms of the dot product is given by
[tex]Cos\theta =\frac{\overrightarrow{u}.\overrightarrow{v}}{u v}[/tex]
[tex]u=\sqrt{0.5^{2}+0.866^{2}}=1[/tex]
[tex]v=\sqrt{-0.707^{2}+0.707^{2}}=1[/tex]
[tex]Cos\theta =\frac{0.5 \times (-0.707) + 0.866 \times 0.707)}{1\times 1}[/tex]
[tex]Cos\theta=0.2587[/tex]
θ = 75°
(c) [tex]\overrightarrow{u}=1\widehat{i}+4\widehat{j}+8\widehat{k}[/tex]
[tex]u=\sqrt{1^{2}+4^{2}+8^{2}}=9[/tex]
[tex]Cos\alpha =\frac{1}{9}[/tex]
[tex]Cos\beta =\frac{4}{9}[/tex]
[tex]Cos\gamma =\frac{8}{9}[/tex]