Answer:
rate variance = 660 U
efficiency variance = 3,960 U
Explanation:
[tex](standard\:rate-actual\:rate) \times actual \: hours DL \: rate \: variance[/tex]
std rate $19.80
actual rate $19.90
actual hours 6,600
[tex](19.80 - 19.90) \times 22,500 = DL \: rate \: variance[/tex]
difference $(0.10)
Each hour cost 10 cent more than expected. This variance will be unfavorable
0.10 extra per hour times 6,600
rate variance $(660.00)
[tex](standard\:hours-actual\:hours) \times standard \: rate = DL \: efficiency \: variance[/tex]
std hours 6400.00
actual hours 6600.00
std rate $19.80
[tex](6,400 - 6,600) \times 19.80 = DL \: efficiency \: variance[/tex]
difference -200.00
For the unit output, the actual hours were more than expected. This variance will be unfavorable.
200 extra hours times 19.8 each
efficiency variance $(3,960.00)