Answer:
option a
Step-by-step explanation:
BA=C
Step 1: Multiply row 1 of matrix B by column 1, 2 and 3 of matrix A to get third column of C
(2x3)+(-4x5)+(1x4) (2x2)+(-4x-5)+(1x1) (2x-4)+(-4x-3)+(1x1)
= (6-20+4 4+20+1 -8+12+1)
= (-10 25 5)
Step 2: Multiply row 2 of matrix B by column 1, 2 and 3 of matrix A to get third column of C
(5x3)+(-3x5)+(2x4) (5x2)+(-3x-5)+(2x1) (5x-4)+(-3x-3)+(2x1)
= (15-15+8 10+15+2 -20+9+2)
= (8 27 -9)
Step 3: Multiply row 3 of matrix B by column 1, 2 and 3 of matrix A to get third column of C
(4x3)+(4x5)+(-5x4) (4x2)+(4x-5)+(-5x1) (4x-4)+(4x-3)+(-5x1)
= (12+20-20 8-20-5 -16-12-5)
= (12 -17 -33)
Step 4: Form the complete matrix
(-10 25 5 )
(8 27 -9 )
(12 -17 -33)
Therefore, option a is correct.
!!