Respuesta :

Answer:

option a

Step-by-step explanation:

BA=C

Step 1: Multiply row 1 of matrix B by column 1, 2 and 3 of matrix A to get third column of C

(2x3)+(-4x5)+(1x4)     (2x2)+(-4x-5)+(1x1)      (2x-4)+(-4x-3)+(1x1)

= (6-20+4    4+20+1    -8+12+1)

= (-10   25   5)

Step 2: Multiply row 2 of matrix B by column 1, 2 and 3 of matrix A to get third column of C

(5x3)+(-3x5)+(2x4)     (5x2)+(-3x-5)+(2x1)      (5x-4)+(-3x-3)+(2x1)

= (15-15+8     10+15+2     -20+9+2)

= (8   27   -9)

Step 3: Multiply row 3 of matrix B by column 1, 2 and 3 of matrix A to get third column of C

(4x3)+(4x5)+(-5x4)     (4x2)+(4x-5)+(-5x1)      (4x-4)+(4x-3)+(-5x1)

= (12+20-20    8-20-5    -16-12-5)

= (12   -17    -33)

Step 4: Form the complete matrix

(-10   25   5  )

(8      27   -9 )

(12    -17   -33)

Therefore, option a is correct.

!!