Respuesta :
Answer:
The charge to mass ratio is [tex]-1.76\times10^{11}[/tex]
Explanation:
[tex]Mass\ of\ electron=m_e=9.11\times10^{-31} kg\\ Charge\ of\ the\ electron=q_e=-1.60\times10^{-19} C\\[/tex]
We need to find how much charge is contained in the electron per unit of mass, to do this we divide the charge in an electron and the mass of an electron:
[tex]\frac{Charge\ of\ electron}{Mass\ of\ electron}=\frac{q_e}{m_e}\frac{C}{kg}=\frac{-1.60\times10^{-19} C}{9.11\times10^{-31} kg}=-1.76\times10^{11} \frac{C}{kg}[/tex]
Answer:
The charge to mass ratio is
m/e= -0.17*10^12kg/c
Explanation:
Step one :
Given data
mass of an electron m= 9.11x10-31kg
charge of electron q= -1.60x10-19C
Applying the equation
mv²/r=Bev
Where m =mass of charge
v= velocity of charge
r= distance
B=magnetic field
e= charge
Rearranging to get the charge-mass ratio we have
mv²/r=Bev
m/e=Br/v
(-1.60x10-19)/(9.11x10-31kg)=Br/v
-0.17*10^12
m/e= -0.17*10^12kg/c