Respuesta :

Answer:

The equation in point slope form is [tex]y+2=-\frac{4}{7}(x+5)[/tex]

The equation in slope intercept form is [tex]y=-\frac{4}{7}x-\frac{34}{7}[/tex]

The equation in standard form is [tex]4x+7y=-34[/tex]

Step-by-step explanation:

we know that

The equation of the line in point slope form is equal to

[tex]y-y1=m(x-x1)[/tex]

we have

[tex]m=-\frac{4}{7}[/tex]

[tex]point\ (-5,-2)[/tex]

substitute

[tex]y+2=-\frac{4}{7}(x+5)[/tex] ----> equation of the line in point slope form

Convert to slope intercept form

[tex]y=mx+b[/tex]

[tex]y+2=-\frac{4}{7}x-\frac{20}{7}[/tex]

[tex]y=-\frac{4}{7}x-\frac{20}{7}-2[/tex]

[tex]y=-\frac{4}{7}x-\frac{34}{7}[/tex] ----> slope intercept form

Convert to standard form

[tex]Ax+By=C[/tex]

where

A is a positive integer

B and C are integer

[tex]y=-\frac{4}{7}x-\frac{34}{7}[/tex]

Multiply by 7 both sides to remove the fraction

[tex]7y=-4x-34\\4x+7y=-34[/tex]