Respuesta :
Answer:
two segment FH = segment FE, two segment FG = segment FI, and two segment HG = segment EI; ΔEFI ~ ΔHFG
Step-by-step explanation:
Dilation by a factor of 1/2 means twice the reduced segment is equal to the original.
The reflection maps E'F to HF, so ΔEFI ~ ΔHFG.
Answer:
Option B.
Step-by-step explanation:
It is given that ΔEFI is dilated by a scale factor of one half with the center of dilation at point F. Then, it is reflected over line a to create ΔHFG.
[tex]\overline{FH}=\frac{1}{2}\times \overline{FE}[/tex]
Multiply both sides by 2.
[tex]2\overline {FH}=\overline{FE}[/tex]
Similarly,
[tex]\overline{FG}=\frac{1}{2}\times \overline{FI}[/tex]
Multiply both sides by 2.
[tex]2\overline {FG}=\overline{FI}[/tex]
And,
[tex]\overline{HG}=\frac{1}{2}\times \overline{EI}[/tex]
Multiply both sides by 2.
[tex]2\overline {HG}=\overline{EI}[/tex]
By SSS property of similarity,
ΔEFI ~ ΔGFH
Since, [tex]2\overline {FH}=\overline{FE}[/tex], [tex]2\overline {FG}=\overline{FI}[/tex], [tex]2\overline {HG}=\overline{EI}[/tex], therefore ΔEFI ~ ΔGFH.
Therefore, the correct option is B.