Find magnetic field at the center of flat coil of insulated current carrying wire, I, where radius of infinite coil relates to r = a(1+theta^2).

Respuesta :

Answer:

The magnetic field at the center of flat coil is [tex]\dfrac{\mu_{0}I}{8a}[/tex].

Explanation:

Given that,

Radius [tex]r = a(1+\theta^2)[/tex]

We need to calculate the magnetic field at the center of flat coil

Using Biot-savart law

[tex]dB=\dfrac{\mu_{0}Idl\sin\alpha}{4\pi\times r^2}[/tex]

Here, [tex]\alpha =90^{/circ}[/tex]

[tex] dl=rd\theta[/tex]

Then, the magnetic field

[tex]dB=\dfrac{\mu_{0}Ird\theta\sin90}{4\pi\times r^2}[/tex]

[tex]dB=\dfrac{\mu_{0}Id\theta}{4\pi\times r}[/tex]

Put the value of r

[tex]dB=\dfrac{\mu_{0}Id\theta}{4\pi\times a(1+\theta^2)}[/tex]

[tex]dB=\dfrac{\mu_{0}I}{4\pi a}\int_{0}^{\infty}{\dfrac{d\theta}{(1+\theta^2)}}[/tex]

[tex]dB=\dfrac{\mu_{0}I}{4\pi a}(1(\tan^2\theta))_{0}^{\infty}[/tex]

[tex]dB=\dfrac{\mu_{0}I}{4\pi a}(\dfrac{\pi}{2}-0)[/tex]

[tex]dB=\dfrac{\mu_{0}I}{4\pi a}\times\dfrac{\pi}{2}[/tex]

[tex]dB=\dfrac{\mu_{0}I}{8a}[/tex]

Hence, The magnetic field at the center of flat coil is [tex]\dfrac{\mu_{0}I}{8a}[/tex].