Respuesta :

Answer:

C) (-8,-64)

Step-by-step explanation:

we have

[tex]7x-y=8[/tex]

we know that

If a ordered pair satisfy the linear equation, then the ordered pair is a solution of the linear equation

Verify each case

case A) (2,-22)

Substitute the value of x and the value of y in the linear equation and then compare the results

[tex]7(2)-(-22)=8[/tex]

[tex]14+22=8[/tex]

[tex]36=8[/tex] ----> is not true

therefore

The ordered pair not satisfy the equation

case B) (7,-1)

Substitute the value of x and the value of y in the linear equation and then compare the results

[tex]7(7)-(-1)=8[/tex]

[tex]49+1=8[/tex]

[tex]50=8[/tex] ----> is not true

therefore

The ordered pair not satisfy the equation

case C) (-8,-64)

Substitute the value of x and the value of y in the linear equation and then compare the results

[tex]7(-8)-(-64)=8[/tex]

[tex]-56+64=8[/tex]

[tex]8=8[/tex] ----> is true

therefore

The ordered pair satisfy the equation

case D) (-6,2/7)

Substitute the value of x and the value of y in the linear equation and then compare the results

[tex]7(-6)-(2/7)=8[/tex]

[tex]-42-(2/7)=8[/tex] -----> is not true

therefore

The ordered pair not satisfy the equation