Answer:
C) (-8,-64)
Step-by-step explanation:
we have
[tex]7x-y=8[/tex]
we know that
If a ordered pair satisfy the linear equation, then the ordered pair is a solution of the linear equation
Verify each case
case A) (2,-22)
Substitute the value of x and the value of y in the linear equation and then compare the results
[tex]7(2)-(-22)=8[/tex]
[tex]14+22=8[/tex]
[tex]36=8[/tex] ----> is not true
therefore
The ordered pair not satisfy the equation
case B) (7,-1)
Substitute the value of x and the value of y in the linear equation and then compare the results
[tex]7(7)-(-1)=8[/tex]
[tex]49+1=8[/tex]
[tex]50=8[/tex] ----> is not true
therefore
The ordered pair not satisfy the equation
case C) (-8,-64)
Substitute the value of x and the value of y in the linear equation and then compare the results
[tex]7(-8)-(-64)=8[/tex]
[tex]-56+64=8[/tex]
[tex]8=8[/tex] ----> is true
therefore
The ordered pair satisfy the equation
case D) (-6,2/7)
Substitute the value of x and the value of y in the linear equation and then compare the results
[tex]7(-6)-(2/7)=8[/tex]
[tex]-42-(2/7)=8[/tex] -----> is not true
therefore
The ordered pair not satisfy the equation