Using the Bohr model, find the wavelength in nanometers of the radiation emitted by a hydrogen atom, when it makes a transition from the n = 9 state to the n = 1 state.

Respuesta :

Answer

0.92265 nm

Explanation:

We have given electron transits from state 1 to state 9

So [tex]n_1=1[/tex] and [tex]n_2=9[/tex]

Now according to Bohr's rule [tex]\frac{1}{\lambda }=R\left ( \frac{1}{n_1^2}-\frac{1}{n_2^2}\right )[/tex] here R is Rydberg constant which value is 10973731.6 [tex]m^{-1[/tex]

So [tex]\frac{1}{\lambda }=10973731.6\left ( \frac{1}{1^2}-\frac{1}{9^2}\right )[/tex]

[tex]\frac{1}{\lambda }=10838253.43m^{-1}[/tex]

[tex]\lambda =9.2265\times 10^{-8}m=0.92265nm[/tex]