Answer:
M = 1073 Mev/c2
u = 0.95 C
Explanation:
given data:
m1 =135 Mev/c2
v1 = 0.53 c
m2 = 938 Mev/c2
v2 = 0.98 c
from conservation of momentum principle we have
[tex]\frac{mu}{\sqrt{1-\frac{u^2}{C^2}}} = \frac{m1v1}{\sqrt{1-\frac{V1^2}{C^2}}} +\frac{m1v1}{\sqrt{1-\frac{V2^2}{C^2}}}[/tex]
[tex]\frac{mu}{\sqrt{1-\frac{u^2}{C^2}}} = \frac{135*0.53c}{0.848} +\frac{938*0.98c}{0.2}[/tex]
[tex]\frac{mu}{\sqrt{1-\frac{u^2}{C^2}}} = 4680.6 C[/tex] ...............1
Total mass of INITIAL particle M =m1+m2 = 1073 Mev/c2
using equation 1
[tex]\frac{1073 u}{\sqrt{1-\frac{u^2}{C^2}}}= 4680.6C[/tex]
solving for u we get
u = 0.95 C