Respuesta :

Answer: [tex]-\sqrt{2}[/tex]

Step-by-step explanation:

The trigonometric function secant is the reciprocal of cosine:

[tex]sec(\alpha)=\frac{1}{cos(\alpha)}[/tex]

For [tex]-135\°[/tex]:

[tex]sec(-135\°)=\frac{1}{cos(-135\°)}[/tex] (1)

On the other hand, it is known [tex]cos(-\alpha)=cos(\alpha)[/tex], hence:

[tex]cos(-135\°)=cos(135\°)[/tex] (2)

In addition, it is known [tex]cos(135\°)=-cos(45\°)=-\frac{\sqrt{2}}{2}[/tex] (3)

Substituting this on (1):

[tex]sec(-135\°)=\frac{1}{-\frac{\sqrt{2}}{2}}[/tex] (4)

[tex]sec(-135\°)=-\frac{2}{\sqrt{2}}[/tex] (5)

[tex]sec(-135\°)=-\frac{2}{\sqrt{2}}(\frac{\sqrt{2}}{\sqrt{2}})[/tex] (6)

Finally:

[tex]sec(-135\°)=-\sqrt{2}[/tex]

Answer:

-[tex]\sqrt{2}[/tex]

Step-by-step explanation:

Ver imagen Emo0714