Provide a clear answer while explaining how to do each step to the question below:

Which of the following expressions are equivalent to [tex]\sqrt[3]{8x^5y^7}[/tex]?

A. [tex]8{^3}x^{15} y^{21}[/tex]
B. [tex]8^{3}x^\frac{5}{3}y^\frac{21}{3}[/tex]
C. [tex]2x^{15}y^{21}[/tex]
D. [tex]2x^\frac{5}{3}y^\frac{7}{3}[/tex]

Respuesta :

[tex]\bf ~\hspace{7em}\textit{rational exponents} \\\\ a^{\frac{ n}{ m}} \implies \sqrt[ m]{a^ n} ~\hspace{10em} a^{-\frac{ n}{ m}} \implies \cfrac{1}{a^{\frac{ n}{ m}}} \implies \cfrac{1}{\sqrt[ m]{a^ n}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \sqrt[3]{8x^5y^7} \\\\[-0.35em] ~\dotfill\\\\ \sqrt[3]{8x^5y^7}\implies \sqrt[3]{2^3x^5y^7}\implies \left( 2^3x^5y^7 \right)^{\frac{1}{3}}\implies 2^{3\cdot \frac{1}{3}}x^{5\cdot \frac{1}{3}}y^{7\cdot \frac{1}{3}}\implies 2x^{\frac{5}{3}}y^{\frac{7}{3}}[/tex]