Respuesta :

Answer:

[tex]x^\frac{1}{2}[/tex]

or

[tex]\sqrt{x}[/tex]

Step-by-step explanation:

[tex]\frac{1}{x^\frac{-3}{6}}[/tex]

I'm going to reduce -3/6 to -1/2 by dividing top and bottom of -3/6 by 3.

[tex]\frac{1}{x^\frac{-1}{2}}[/tex]

Now I'm going to get rid of the negative exponent by moving x to the top; so -1/2 will change to 1/2 instead when doing this:

[tex]1x^\frac{1}{2}[/tex]

[tex]x^\frac{1}{2}[/tex]

[tex]\sqrt{x}[/tex]

Please let know if I read the problem right:

[tex]\frac{1}{x^\frac{-3}{6}}[/tex]

Answer:

The answer is  [tex]\sqrt{x}[/tex]

Step-by-step explanation:

Step 1: Deal with the negative exponent applying this rule:

[tex]x^{-b} = \frac{1}{x^{b}}[/tex]

In this case

[tex]b=- \frac{3}{6}[/tex]

Putting all together:

[tex]\frac{1}{x^{-\frac{3}{6}}} =x^{-(-\frac{3}{6}) } =x^{\frac{3}{6}}[/tex]

Step 2: Reduce the fractional exponent

The fractional exponent [tex]\frac{3}{6}[/tex] can be reduced dividing the numerator and denominator of the fraction by the least common multiple.

In order to find it, we have

[tex]3=(3)*(1)\\6=(3)*(2)\\[/tex]

Therefore, the least common multiple is 3

Reducing the fraction:

[tex]\frac{3}{6}=\frac{3\div3}{6\div3}=\frac{1}{2}[/tex]

Therefore:

[tex]x^{\frac{3}{6}}=x^{\frac{1}{2}}[/tex]

Step 3: Deal with the fractional exponent

A fractional exponent can be expressed as a root, following this rule:

[tex]x^{ \frac{a}{b}} = \sqrt[b]{x^{a}}[/tex]

In this case:

[tex]a=1\\b=2[/tex]

As the index of the root is 2, this is a square root, therefore:

[tex]x^{\frac{1}{2}} = \sqrt{x}[/tex]