Respuesta :

Answer:

[tex](z-11)^{4}=z^{4}-44z^{3}+726z^{2}-5324z+14641[/tex]

Step-by-step explanation:

* Look to the attached file

Ver imagen Ashraf82

Answer:

Step-by-step explanation:

[tex](z-11)^4[/tex] is to be found out

Recall binomial theorem as

[tex](x+a)^n=x^n+nC1 x^{n-1}a+nC2 x^{n-1} a^2+...+a^n[/tex]

Substitute x =z, a =-11 and n =4

We get

[tex](z-11)^4 = z^4-4z^3(11)+4C2 z^2 (11^2)-4C3 (z)(11^3)+11^4\\(z-11)^4 = z^4-44z^3 +726z^2-5324z+14641[/tex]

This would be the simplified expansion for the given power.