Respuesta :
Answer:
[tex](z-11)^{4}=z^{4}-44z^{3}+726z^{2}-5324z+14641[/tex]
Step-by-step explanation:
* Look to the attached file
Answer:
Step-by-step explanation:
[tex](z-11)^4[/tex] is to be found out
Recall binomial theorem as
[tex](x+a)^n=x^n+nC1 x^{n-1}a+nC2 x^{n-1} a^2+...+a^n[/tex]
Substitute x =z, a =-11 and n =4
We get
[tex](z-11)^4 = z^4-4z^3(11)+4C2 z^2 (11^2)-4C3 (z)(11^3)+11^4\\(z-11)^4 = z^4-44z^3 +726z^2-5324z+14641[/tex]
This would be the simplified expansion for the given power.