Answer:
E₁ = 9.759[tex]{\mu\frac{V}{m}}[/tex]sin(7.0 × 10⁶ t)
Explanation:
Given:
E₁ = 3sin(7.0 × 10⁶ t)
E₂ = 4sin(7.0 × 10⁶ t + 45°)
E₃ = 5sin(7.0 × 10⁶ t + 90°)
Now,
the net vertical component of Electric field E is
[tex]E_v[/tex]= 3sin(0°) + 4sin(0° + 45°) + 5sin(0° + 90°)
or
[tex]E_v[/tex] = 7.828 [tex]{\mu\frac{V}{m}}[/tex]
Now,
the net horizontal component of Electric field E is
[tex]E_h[/tex] = 3cos(0°) + 4cos(0° + 45°) + 5cos(0° + 90°)
or
[tex]E_h[/tex] = 5.828 [tex]{\mu\frac{V}{m}}[/tex]
Therefore, the resultant Electric field is
[tex]E_{R} =\sqrt{E_v^2+E_h^2}[/tex]
or
[tex]E_{R} =\sqrt{7.828^2+5.828^2}[/tex]
or
[tex]E_{R} =9.759\ {\mu\frac{V}{m}}[/tex]
Now, the phase angle is given as:
[tex]\phi=\tan^{-1}\frac{0}{9.759} = [/tex]
hence,
E₁ = 9.759[tex]{\mu\frac{V}{m}}[/tex]sin(7.0 × 10⁶ t)