Answer:
[tex]\large\boxed{a.\ 1,\ 2,\ 1,\ 1,\ \dfrac{1}{2}}[/tex]
Step-by-step explanation:
We have the recursive formula of a sequence:
[tex]\left\{\begin{array}{ccc}a_1=1\\a_2=2\\a_n=\dfrac{1}{2}(a_{n-1}\cdot a_{n-2})\end{array}\right\\\\\text{thereofre}\\\\a_3=\dfrac{1}{2}(a_2\cdot a_1)=\dfrac{1}{2}(2\cdot1)=\dfrac{1}{2}(2)=1\\\\a_4=\dfrac{1}{2}(a_3\cdot a_2)=\dfrac{1}{2}(1\cdot2)=\dfrac{1}{2}(2)=1\\\\a_5=\dfrac{1}{2}(a_4\cdot a_3)=\dfrac{1}{2}(1\cdot1)=\dfrac{1}{2}(1)=\dfrac{1}{2}[/tex]