Given:
Pressure, [tex]P_{1}[/tex] = 1300 kPa
Temperature, [tex]T_{1}[/tex] = [tex]500^{\circ}[/tex]
[tex]P_{2}[/tex] = 100 kPa
[tex]T_{2} = 127^{\circ}[/tex]
velocity, v = 40 m/s
A = 1[tex]m^{2}[/tex]
Solution:
For air propertiess at
[tex]P_{1}[/tex] = 1300 kPa
[tex]T_{1}[/tex] = [tex]500^{\circ}[/tex]
[tex]h_{1}[/tex] = 793kJ/K
[tex]v_{1}[/tex] = [tex]0.172\frac{m^{3}}{kg}[/tex]
and also at
[tex]P_{2}[/tex] = 100 kPa
[tex]T_{2} = 127^{\circ}[/tex]
[tex]h_{2}[/tex] = 401 KJ/K
[tex]v_{2}[/tex] = [tex]1.15\frac{m^{3}}{kg}[/tex]
a) Mass flow rate is given by:
[tex]m' = \frac{Av}{v_{1}}[/tex]
Now,
[tex]m = \frac{0.2\times 40}{0.172}[/tex] = 46.51 kg/s
b) for the power produced by turbine, [tex]P = m'(h_{1} - h_{2})[/tex]
[tex]P = 46.51\times(793 - 401)[/tex] = 18.231 MW