Answer:
[tex]CI=(0.431,1.0376)[/tex]
Explanation:
Given that:
The sample size , n = 7
The mean of the observation:
Mean = Sum of observation / Total number of observation
= (0.56+ 0.72+ 0.10 + 0.99 + 1.32 + 0.52 + 0.93) / 7 = 0.7343
The standard deviation:
[tex]S.D. = \sqrt {\frac {\sum_{i=1}^{i=7}(x_i-\bar{x})^2}{n-1}}[/tex]
Calculating SD as:
[tex]S.D. = \sqrt {\frac {(0.56-0.7343)^2+(0.72-0.7343)^2+.....+(0.52-0.7343)^2+(0.93-0.7343)^2}{7-1}}[/tex]
SD = 0.3928
Degree of freedom = n-1 = 6
The critical value for t at 2% level of significance and 6 degree of freedom is 2.043.
So,
[tex]90 \% \ confidence\ interval=Mean\pm Z\times \frac {SD}{\sqrt {n}}[/tex]
So, applying values , we get:
[tex]CI=0.7343\pm 2.043\times \frac {0.3928}{\sqrt {7}}[/tex]
[tex]CI=(0.431,1.0376)[/tex]