The legs of an isosceles right triangle increase in length at a rate of 2 m/s. Determine each. (a) At what rate is the area of the triangle changing when the legs are 2 m long? (b) At what rate is the area of the triangle changing when the hypotenuse is 1 m long? (c) At what rate is the length of the hypotenuse changing?

Respuesta :

Answer:

a) The area of the triangle changing when the legs are 2 m long is 4 meter square.

b) The area of the triangle changing when the hypotenuse is 1 m long is [tex]\sqrt2[/tex] meter square.

c) The rate is the length of the hypotenuse changing is [tex]2\sqrt2[/tex] m/s.

Step-by-step explanation:

Given : The legs of an isosceles right triangle increase in length at a rate of 2 m/s.

Let the length of a leg of an isosceles right triangle be 'x'.

Let the length of the hypotenuse be 'h'.

The are of the triangle is given by,

[tex]A=\frac{1}{2}\times \text{Base}\times \text{Height}[/tex]

[tex]A=\frac{1}{2}\times x\times x[/tex]

[tex]A(x)=\frac{1}{2}x^2[/tex] ....(1)

Differentiate w.r.t t,

[tex]\frac{dA}{dt}=\frac{dA}{dx}\times \frac{dx}{dt}[/tex]

We have given, [tex]\frac{dx}{dt}= 2\ m/s[/tex]

[tex]\frac{dA}{dx}=x[/tex] (differentiate (1) w.r.t x)

[tex]\frac{dA}{dt}=2x[/tex] ....(2)

a) The legs are 2 m long  i.e. x=2 m

Substitute in (1),

[tex]\frac{dA}{dt}=2\times 2[/tex]

[tex]\frac{dA}{dt}=4\ m^2[/tex]

The area of the triangle changing when the legs are 2 m long is 4 meter square.

b) The hypotenuse is 1 m long.

Applying Pythagoras theorem,

[tex]h^2=x^2+x^2[/tex]

[tex]h^2=2x^2[/tex]

[tex]x=\frac{h}{\sqrt2}[/tex]

Put h=1,

[tex]x=\frac{1}{\sqrt2}[/tex]

Substitute the value of x in equation (2),

[tex]\frac{dA}{dt}=2\times \frac{1}{\sqrt2}[/tex]

[tex]\frac{dA}{dt}=\sqrt2\ m^2[/tex]

The area of the triangle changing when the hypotenuse is 1 m long is [tex]\sqrt2[/tex] meter square.

c) We know,

[tex]x=\frac{h}{\sqrt2}[/tex]

or [tex]h=\sqrt2 x[/tex]

Derivate w.r.t t,

[tex]\frac{dh}{dt}=\sqrt2 \frac{dx}{dt}[/tex]

We have given, [tex]\frac{dx}{dt}= 2\ m/s[/tex]

So, [tex]\frac{dh}{dt}=\sqrt2\times 2[/tex]

[tex]\frac{dh}{dt}=2\sqrt2[/tex]

The rate is the length of the hypotenuse changing is [tex]2\sqrt2[/tex] m/s.

a) The rate of change of the area is 4 square meters per second.

b) The rate of change of the area is 2 square meters per second.

c) The rate of change of the length of the hypotenuse is [tex]2\sqrt{2}[/tex] meters per second.

The rate of change of the length of the hypotenuse is 4 meters per second.

How to find the rate of change in an isosceles triangle

a) The area of the right isosceles triangle ([tex]A[/tex]), in square meters, is described by the following expression:

[tex]A = \frac{1}{2}\cdot x\cdot y[/tex] (1)

Where [tex]x, y[/tex] are the legs of the right isosceles triangle, in meters.

The formula for the rate of change of the area ([tex]\dot A[/tex]), in square meters per second, is derived by differential calculus:

[tex]\dot A = \frac{1}{2}\cdot (\dot x \cdot y + x\cdot \dot y)[/tex] (2)

Where [tex]\dot x, \dot y[/tex] are the rates of change of the lengths of right isosceles legs, in meters per second.

If we know that [tex]x = y = 2\,m[/tex] and [tex]\dot x = \dot y = 2\,\frac{m}{s}[/tex], then the rate of change of the area is:

[tex]\dot A = \frac{1}{2}\cdot \left[\left(2\,\frac{m}{s} \right)\cdot (2\,m)+\left(2\,\frac{m}{s} \right)\cdot (2\,m)\right][/tex]

[tex]\dot A = 4\,\frac{m^{2}}{s}[/tex]

The rate of change of the area is 4 square meters per second. [tex]\blacksquare[/tex]

b) If we know that [tex]x = y = 1\,m[/tex] and [tex]\dot x = \dot y = 2\,\frac{m}{s}[/tex], then the rate of change of the area is:

[tex]\dot A = \frac{1}{2}\cdot \left[\left(2\,\frac{m}{s} \right)\cdot (1\,m)+\left(2\,\frac{m}{s} \right)\cdot (1\,m)\right][/tex]

[tex]\dot A = 2\,\frac{m^{2}}{s}[/tex]

The rate of change of the area is 2 square meters per second. [tex]\blacksquare[/tex]

c) The length of the hypotenuse ([tex]r[/tex]), in meters, is defined by Pythagorean theorem:

[tex]r^{2} = x^{2}+y^{2}[/tex] (3)

And by differential calculus we derive an expression for the rate of change of the length of the hypotenuse ([tex]\dot r[/tex]), in meters per second:

[tex]2\cdot r \cdot \dot r = 2\cdot x \cdot \dot x + 2\cdot y\cdot \dot y[/tex] (4)

[tex]\dot r = \frac{x\cdot \dot x + y\cdot \dot y}{r}[/tex]

[tex]\dot r = \frac{x\cdot \dot x + y\cdot \dot y}{\sqrt{x^{2}+y^{2}}}[/tex]

Now we proceed to calculate the rate of change of the length of the hypotenuse:

([tex]x = y= 2\,m[/tex], [tex]\dot x = \dot y = 2\,\frac{m}{s}[/tex])

[tex]\dot r = \frac{\left(2\,m\right)\cdot \left(2\,\frac{m}{s} \right)+\left(2\,m\right)\cdot \left(2\,\frac{m}{s} \right)}{\sqrt{(2\,m)^{2}+(2\,m)^{2}}}[/tex]

[tex]\dot r = 2\sqrt{2}\,\frac{m}{s}[/tex]

The rate of change of the length of the hypotenuse is [tex]2\sqrt{2}[/tex] meters per second. [tex]\blacksquare[/tex]

([tex]x = y = 1\,m[/tex], [tex]\dot x = \dot y = 2\,\frac{m}{s}[/tex])

[tex]\dot r = \frac{\left(1\,m\right)\cdot \left(2\,\frac{m}{s} \right)+\left(1\,m\right)\cdot \left(2\,\frac{m}{s} \right)}{\sqrt{(1\,m)^{2}+(1\,m)^{2}}}[/tex]

[tex]\dot r = 4\,\frac{m}{s}[/tex]

The rate of change of the length of the hypotenuse is 4 meters per second. [tex]\blacksquare[/tex]

To learn more on rate of change, we kindly invite to check this verified question: https://brainly.com/question/11606037