Respuesta :
Answer:
Yes; Opposite sides are congruent, and diagonals are congruent.
Step-by-step explanation:
we have
[tex]A(4, -7), B(4, -2), C(0, -2), D(0, -7)[/tex]
we know that
the formula to calculate the distance between two points is equal to
[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]
step 1
Find the length of the sides
Find the distance AB
substitute the values
[tex]d=\sqrt{(-2+7)^{2}+(4-4)^{2}}[/tex]
[tex]d=\sqrt{(5)^{2}+(0)^{2}}[/tex]
[tex]AB=5\ units[/tex]
Find the distance BC
substitute the values
[tex]d=\sqrt{(-2+2)^{2}+(0-4)^{2}}[/tex]
[tex]d=\sqrt{(0)^{2}+(-4)^{2}}[/tex]
[tex]BC=4\ units[/tex]
Find the distance CD
substitute the values
[tex]d=\sqrt{(-7+2)^{2}+(0-0)^{2}}[/tex]
[tex]d=\sqrt{(-5)^{2}+(0)^{2}}[/tex]
[tex]CD=5\ units[/tex]
Find the distance AD
substitute the values
[tex]d=\sqrt{(-7+7)^{2}+(0-4)^{2}}[/tex]
[tex]d=\sqrt{(0)^{2}+(-4)^{2}}[/tex]
[tex]AD=4\ units[/tex]
Compare the length sides
AB=CD
BC=AD
therefore
Opposite sides are congruent
step 2
Find the length of the diagonals
Find the distance AC
substitute the values
[tex]d=\sqrt{(-2+7)^{2}+(0-4)^{2}}[/tex]
[tex]d=\sqrt{(5)^{2}+(-4)^{2}}[/tex]
[tex]AC=\sqrt{41}\ units[/tex]
Find the distance BD
substitute the values
[tex]d=\sqrt{(-7+2)^{2}+(0-4)^{2}}[/tex]
[tex]d=\sqrt{(-5)^{2}+(-4)^{2}}[/tex]
[tex]BD=\sqrt{41}\ units[/tex]
Compare the length of the diagonals
AC=BD
therefore
Diagonals are congruent
The figure is a rectangle, because Opposite sides are congruent, and diagonals are congruent
Answer:
The correct option is 2.
Step-by-step explanation:
Given information: A(4, –7), B(4, –2), C(0, –2), D(0, –7).
Distance formula:
[tex]D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Using distance formula we get
Length of sides are
[tex]AB=\sqrt{\left(4-4\right)^2+\left(-2-\left(-7\right)\right)^2}[/tex]
[tex]AB=\sqrt{(0)^2+(-2+7)^2}[/tex]
[tex]AB=\sqrt{5^2}=5[/tex]
Similarly,
[tex]BC=\sqrt{\left(0-4\right)^2+\left(-2-\left(-2\right)\right)^2}=4[/tex]
[tex]CD=\sqrt{\left(0-0\right)^2+\left(-7-\left(-2\right)\right)^2}=5[/tex]
[tex]AD=\sqrt{\left(0-4\right)^2+\left(-7-\left(-7\right)\right)^2}=4[/tex]
Length of diagonals are
[tex]AC=\sqrt{\left(0-4\right)^2+\left(-2-\left(-7\right)\right)^2}=\sqrt{41}[/tex]
[tex]BD=\sqrt{\left(0-4\right)^2+\left(-7-\left(-2\right)\right)^2}=\sqrt{41}[/tex]
It figure ABCD,
1. AB and CD are opposite sides.
2. BC and AD are opposite sides.
3. AC and BD are diagonals.
From the above calculations it is clear that opposite sides are congruent, and diagonals are congruent. So, the figure ABCD is a rectangle.
Therefore the correct option is 2.