Answer: [tex]-0.4862[/tex]
Explanation:
Given : The mean pulse rate (in beats per minute) of adult males[tex]\mu=69\text{ bpm}[/tex]
For sample : Size = [tex]n=166[/tex]
Mean : [tex]\overline{x}=68.6\text{ ppm}[/tex]
Standard deviation : [tex]\sigma=10.6\text{ bpm}[/tex]
We assume that its a normal distribution , since the sample size is large (>30) then test applied here is z-test .
The formula to calculate the z-statistic is given by :-
[tex]z=\dfrac{\overline{x}-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
[tex]\Rightarrow\ z=\dfrac{68.6-69}{\dfrac{10.6}{\sqrt{166}}}=-0.486192404782\approx-0.4862[/tex]
Hence, the value of the test statistic = [tex]-0.4862[/tex]