The mean pulse rate​ (in beats per​ minute) of adult males is equal to 69 bpm. For a random sample of 166 adult​ males, the mean pulse rate is 68.6 bpm and the standard deviation is 10.6 bpm. Find the value of the test statistic.

Respuesta :

Answer: [tex]-0.4862[/tex]

Explanation:

Given : The mean pulse rate​ (in beats per​ minute) of adult males[tex]\mu=69\text{ bpm}[/tex]

For sample : Size = [tex]n=166[/tex]

Mean : [tex]\overline{x}=68.6\text{ ppm}[/tex]

Standard deviation : [tex]\sigma=10.6\text{ bpm}[/tex]

We assume that its a normal distribution , since the sample size is large (>30) then test applied here is z-test .

The formula to calculate the z-statistic is given by :-

[tex]z=\dfrac{\overline{x}-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]

[tex]\Rightarrow\ z=\dfrac{68.6-69}{\dfrac{10.6}{\sqrt{166}}}=-0.486192404782\approx-0.4862[/tex]

Hence, the value of the test statistic = [tex]-0.4862[/tex]