Answer:
The magnitude of the average drag force is 2412.34 N.
Explanation:
Given that,
Mass of car [tex]m=8.10\times10^{-3}\ kg[/tex]
Velocity v = 25.8 m/s
Distance [tex]d= 3.90\times10^{2}[/tex]
Speed of car = 13.1 m/s
Height = 12.5 m
We need to calculate the magnitude of the average drag force
Using equation kinetic energy
[tex]K.E_{i}=K.E_{f}+P.E+F_{d}[/tex]
[tex]\dfrac{1}{2}mv_{i}^2=\dfrac{}{}mv_{f}^2+mgh+F\times d[/tex]
Where, [tex]v_{i}[/tex] = initial velocity
[tex]v_{f}[/tex] = final velocity
h = height
g = acceleration due to gravity
[tex]F_{d}[/tex]=drag force
m = mass of the car
d = distance
Put the value into the formula
[tex]\dfrac{1}{2}\times8.10\times10^{3}\times25.8=\dfrac{1}{2}\times8.10\times10^{3}\times13.1+8.10\times10^{3}\times9.8\times12.5+F\times3.90\times10^{2}[/tex]
[tex]F=\dfrac{\dfrac{1}{2}\times8.10\times10^{3}\times25.8-\dfrac{1}{2}\times8.10\times10^{3}\times13.1-8.10\times10^{3}\times9.8\times12.5}{3.90\times10^{2}}[/tex]
[tex]F=-2412.34\ N[/tex]
[tex]|F|=2412.34\ N[/tex]
Hence, The magnitude of the average drag force is 2412.34 N.