Answer:
25 mph
Explanation:
[tex]V_a[/tex] = Speed of airplane = 125 mph
[tex]V_w[/tex] = Speed of wind
Speed of plane moving against wind
[tex]V_a-V_w[/tex]
Speed of plane moving with wind
[tex]V_a+V_w[/tex]
Time taken to fly against wind
[tex]\frac{300}{V_a-V_w}[/tex]
Time taken to fly with wind
[tex]\frac{300}{V_a+V_w}[/tex]
Total time taken to fly both ways = 5 hours
[tex]time=\frac{distance}{velocity}[/tex]
So,
[tex]\frac{300}{V_a-V_w}+\frac{300}{V_a+V_w}=5\\\Rightarrow \frac{300(V_a+V_w+V_a-V_w)}{V_a^2-V_w^2}=5\\\Rightarrow \frac{300(2V_a}{V_a^2-V_w^2}=5\\\Rightarrow \frac{600V_a}{5}=V_a^2-V_w^2\\\Rightarrow 120V_a-V_a^2=-V_w^2\\\Rightarrow 120\times 125-125^2=-V_w^2\\\Rightarrow 15000-15625=-V_w^2\\\Rightarrow -625=-V_w^2\\\Rightarrow 625=V_w^2\\\Rightarrow V_w=25\ mph[/tex]
∴ Speed of wind is 25 mph