Respuesta :

gmany

Answer:

a = 3, b = 7, c = 2

Step-by-step explanation:

The Prime Factorization of a Number 49,392

[tex]\begin{array}{c|c}49392&2\\24696&2\\12348&2\\6174&2\\3087&3\\1029&3\\343&7\\49&7\\7&7\\1\end{array}[/tex]

[tex]49,392=2\cdot2\cdot2\cdot2\cdot3\cdot3\cdot7\cdot7\cdot7=2^4\cdot3^2\cdot7^3\\\\49,392=a^2\times b^3\times c^4\to a^2\times b^3\times c^4=3^2\cdot7^3\cdot2^4[/tex]

Therefore

a = 3, b = 7, c = 2

Answer:

a = 3, b = 7 and c = .2

Step-by-step explanation:

Lets find the prime factors of 49392:

2   49392

2    24696

2    12348

2    6174

3    3087

3    1029

7      343

7      49

7      7

1

So 49392 = 2^4 * 3^2 * 7^3

Comparing with a^2 * b^3 * c^4 :-

a = 3, b = 7 and c = 2.