Answer:
M = 222 fringes
Explanation:
given
λ = 559 n m = 559 × 10⁻⁹ m
radius = 0.026 mm = 0.026 ×10⁻³ m
length of the glass plate = 22.1 ×10⁻² m
using relation
[tex]2t=(m+\dfrac{1}{2})\lambda\ \ (m=0,1,2,3...)\\where\ 0\leq t\leq 2r\\m = \dfrac{2t}{\lambda}-\dfrac{1}{2}[/tex]
[tex]m_{max} = \dfrac{2\times 2r}{\lambda}-\dfrac{1}{2}\\m_{max} = \dfrac{2\times 2\times 0.026\times 10^{-3}}{559\times 10^{-9}}-\dfrac{1}{2}[/tex]
= 221.79
= 221 (approx.)
hence no of bright fringe
M = m + 1
= 221 +1
M = 222 fringes