Answer:
[tex]\frac{v_{A}}{v_{B}} = 1.785[/tex]
Explanation:
[tex]T_{A}[/tex] = Tension force in string A = 403 N
[tex]T_{B}[/tex] = Tension force in string B = 800 N
[tex]d_{A}[/tex] = diameter of string A = 0.513 mm
[tex]d_{B}[/tex] = diameter of string B = 1.29 mm
[tex]v_{A}[/tex] = wave speed of string A
[tex]v_{B}[/tex] = wave speed of string B
Ratio of the wave speeds is given as
[tex]\frac{v_{A}}{v_{B}} = \sqrt{\frac{T_{A}}{T_{B}}} \left ( \frac{d_{B}}{d_{A}} \right )[/tex]
[tex]\frac{v_{A}}{v_{B}} = \sqrt{\frac{403}{800}} \left ( \frac{1.29}{0.513} \right )[/tex]
[tex]\frac{v_{A}}{v_{B}} = 1.785[/tex]