Answer with explanation:
Here, a and b are two real numbers.
Arithmetic Mean of a and b
[tex]A=\frac{a+b}{2}[/tex]
[tex]\rightarrow a< \frac{a+b}{2}<b[/tex]
Geometric Mean of a and b
[tex]G=\sqrt{ab}[/tex]
[tex]\rightarrow a< \sqrt{ab}<b[/tex]
[tex]A-G\\\\=\frac{a+b}{2}-\sqrt{ab}\\\\=\frac{a+b-2\sqrt{ab}}{2}\\\\=[\frac{\sqrt{a}-\sqrt{b}}{\sqrt{2}}]^2>0\\\\A-G>0\\\\A>G[/tex]
Square of difference of any two numbers is greater than or equal to 0.
⇒A.M of two Numbers > G.M of two Numbers