Answer:
Option D is the correct answer.
Explanation:
Refer the figure given.
By Pascal's principle we have
[tex]\frac{F_1}{A_1}=\frac{F_2}{A_2}[/tex]
F2 = 2 x 10⁴ N
[tex]A_1=\frac{\pi\times (12\times 10^{-3})^2}{4}=1.13\times 10^{-4}m^2\\\\A_2=\frac{\pi\times (36\times 10^{-3})^2}{4}=1.02\times 10^{-3}m^2[/tex]
Substituting
[tex]\frac{F_1}{1.13\times 10^{-4}}=\frac{2\times 10^4}{1.02\times 10^{-3}}\\\\F_1=2.22\times 10^3N[/tex]
Option D is the correct answer.