Respuesta :

Answer:

[tex]y(x)=c_1e^{-\frac{5}{2}x}+c_2xe^{-\frac{5}{2}x}[/tex]

Step-by-step explanation:

The given differential equation is 4y"+20y'+25y = 0

The characteristics equation is given by

[tex]4r^2+20r+25=0[/tex]

Now, solve the equation for r

Factor by middle term splitting

[tex]4r^2+10r+10r+25=0\\\\2r(2r+5)+5(2r+5)=0[/tex]

Factored out the common term

[tex](2r+5)(2r+5)=0[/tex]

Use Zero product property

[tex](2r+5)=0,(2r+5)=0[/tex]

Solve for r

[tex]r_{1,2}=-\frac{5}{2}[/tex]

We got the repeated roots.

Hence, the general equation for the differential equation is

[tex]y(x)=c_1e^{-\frac{5}{2}x}+c_2xe^{-\frac{5}{2}x}[/tex]