Answer:
The satellite's perigee and apogee are[tex]2.13\times10^{4}\ km[/tex] and [tex]1.3\times10^{4}\ km[/tex]
Explanation:
Given that,
Semi major axis[tex]a = 1.7\times10^{7}\ m[/tex]
Eccentricity = 0.25
We calculate the satellite's perigee
Using formula of perigee
[tex]Perigee=a(1+e)[/tex]
[tex]Perigee=1.7\times10^{7}(1+0.25)[/tex]
[tex]Perigee=2.13\times10^{7}\ m[/tex]
[tex]Perigee=2.13\times10^{4}\ km[/tex]
Using formula of apogee
[tex]Apogee =a(1-e)[/tex]
[tex]Apogee =1.7\times10^{7}(1-0.25)[/tex]
[tex]Apogee =12750000[/tex]
[tex]Apogee=1.3\times10^{7}\ m[/tex]
[tex]Apogee=1.3\times10^{4}\ km[/tex]
Hence, The satellite's perigee and apogee are[tex]2.13\times10^{4}\ km[/tex] and [tex]1.3\times10^{4}\ km[/tex]