A hoop (I = MR2) of mass 3 kg and radius 1.1 m is rolling at a center-of-mass speed of 11 m/s. An external force does 842 J of work on the hoop. What is the new speed of the center of mass of the hoop (in m/s)? Round your answer to the nearest whole number.

Respuesta :

Answer:

[tex]v_f = 20 m/s[/tex]

Explanation:

Since the hoop is rolling on the floor so its total kinetic energy is given as

[tex]KE = \frac{1}{2}mv^2 + \frac{1}{2} I\omega^2[/tex]

now for pure rolling condition we will have

[tex]v = R\omega[/tex]

also we have

[tex]I = mR^2[/tex]

now we will have

[tex]KE = \frac{1}{2}mv^2 + \frac{1}{2}(mR^2)\frac{v^2}{R^2}[/tex]

[tex]KE = mv^2[/tex]

now by work energy theorem we can say

[tex]W = KE_f - KE_i[/tex]

[tex]842 J = mv_f^2 - mv_i^2[/tex]

[tex]842 = 3(v_f^2) - 3\times 11^2[/tex]

now solve for final speed

[tex]v_f = 20 m/s[/tex]