Determine the energy required to accelerate an electron between each of the following speeds. (a) 0.500c to 0.900c MeV (b) 0.900c to 0.942c MeV

Respuesta :

Answer:

The energy required to accelerate an electron is 0.582 Mev and 0.350 Mev.

Explanation:

We know that,

Mass of electron [tex]m_{e}=9.11\times10^{-31}\ kg[/tex]

Rest mass energy for electron = 0.511 Mev

(a). The energy required to accelerate an electron from 0.500c to 0.900c Mev

Using formula of rest,

[tex]E=\dfrac{E_{0}}{\sqrt{1-\dfrac{v_{f}^2}{c^2}}}-\dfrac{E_{0}}{\sqrt{1-\dfrac{v_{i}^2}{c^2}}}[/tex]

[tex]E=\dfrac{0.511}{\sqrt{1-\dfrac{(0.900c)^2}{c^2}}}-\dfrac{0.511}{\sqrt{1-\dfrac{(0.500c)^2}{c^2}}}[/tex]

[tex]E=0.582\ Mev[/tex]

(b). The energy required to accelerate an electron from 0.900c to 0.942c Mev

Using formula of rest,

[tex]E=\dfrac{E_{0}}{\sqrt{1-\dfrac{v_{f}^2}{c^2}}}-\dfrac{E_{0}}{\sqrt{1-\dfrac{v_{i}^2}{c^2}}}[/tex]

[tex]E=\dfrac{0.511}{\sqrt{1-\dfrac{(0.942c)^2}{c^2}}}-\dfrac{0.511}{\sqrt{1-\dfrac{(0.900c)^2}{c^2}}}[/tex]

[tex]E=0.350\ Mev[/tex]

Hence, The energy required to accelerate an electron is 0.582 Mev and 0.350 Mev.