Respuesta :

Answer:

[tex] y=\frac{C}{x}[/tex].

Step-by-step explanation:

Given homogeneous equation

[tex] x^2ydy+xy^2dx=0[/tex]

[tex]\frac{\mathrm{d}y}{\mathrm{d}x}=-\frac{xy^2}{x^2y}[/tex]

Substitute y=ux , [tex]u=\frac{y}{x}[/tex]

[tex] \frac{\mathrm{d}y}{\mathrm{d}x}=-\frac{y}{x}[/tex]

Now,

[tex]u+x\frac{\mathrm{d}u}{\mathrm{d}x}=\frac{\mathrm{d}y}{\mathrm{d}x}[/tex]

[tex]u+x\frac{\mathrm{d}u}{\mathrm{d}x}=-u[/tex]

[tex]\frac{\mathrm{d}u}{\mathrm{d}x}=-2u[/tex]

[tex]\frac{du}{u}=-\frac{dx}{x}[/tex]

Integrating both side we get

lnu=-2lnx+lnC

Where lnC= integration constant

[tex]lnu+ln{x}^2=lnC[/tex]

[tex]lnux^2=lnC[/tex]

Cancel ln on both side

[tex]ux^2=C[/tex]

Substitute [tex]u=\frac{y}{x}[/tex]

Then we get

xy=C

[tex]y=\frac{C}{x}[/tex].

Answer:[tex]y=\frac{C}{x}[/tex].