Solve y''+2y' - 3y = 0, y(0) = 3, y'(0) = 11 Preview y(t) = |2e^(-3t)+5e^t Points possible: 1 This is attempt 3 of 3 Score on last attempt: 0. Score in gradebook: 0 License Submit

Respuesta :

r3t40

[tex]y''+2y'-3y=0 [/tex]

Second order linear homogeneous differential equation with constant coefficients, ODE has a form of,

[tex]ay''+by'+cy=0[/tex]

From here we assume that for any equation of that form has a solution of the form, [tex]e^{yt}[/tex]

Now the equation looks like this,

[tex]((e^{yt}))''+2((e^{yt}))'-3e^{yt}=0[/tex]

Now simplify to,

[tex]e^{yt}(y^2+2y-3)=0[/tex]

You can solve the simplified equation using quadratic equation since,

[tex]e^{yt}(y^2+2y-3)=0\Longleftrightarrow y^2+2y-3=0[/tex]

Using the QE we result with,

[tex]\underline{y_1=1}, \underline{y_2=-3}[/tex]

So,

For two real roots [tex]y_1\neq y_2[/tex] the general solution takes the form of,

[tex]y=c_1e^{y_1t}+c_2e^{y_2t}[/tex]

Or simply,

[tex]\boxed{y=c_1e^t+c_2e^{-3t}}[/tex]

Hope this helps.

r3t40