Respuesta :

Step-by-step explanation:

f(x) = x² − 6x + 9

f(½) = (½)² − 6(½) + 9

f(½) = ¼ − 3 + 9

f(½) = 6¼

The value is 6¼, or as an improper fraction, 25/4.

Answer:   The correct answer is:   " 6 [tex]\frac{1}{4}[/tex] " ;  

_______________________________________________                  

                                 or;  write as:   " 6.25 " .

______________________________________________

     " f([tex]\frac{1}{2})[/tex] =  6 [tex]\frac{1}{4}[/tex] " ;

             

                                             =  6.26 " .

______________________________________________

Step-by-step explanation:

______________________________________________

Given the function:

______________________________________________

      " f(x)  =  x² − 6x + 9 " ;

______________________________________________

What is:   " f([tex]\frac{1}{2}[/tex]) " ?

______________________________________________

Plug in "([tex]\frac{1}{2}[/tex])"  for all values of "x" in the equation;  

                →  to solve for:  " f([tex]\frac{1}{2}[/tex]) " ;   as follows:

______________________________________________

→     " f([tex]\frac{1}{2}[/tex]) " ;  

     =  ([tex]\frac{1}{2}[/tex])²  6*([tex]\frac{1}{2}[/tex]) + 9  ;

 

    =   ([tex]\frac{1^{2} }{2^{2}}[/tex])    ([tex]\frac{6*1}{2}[/tex]) + 9 ;

     =        ([tex]\frac{1}{4}[/tex]) −  ([tex]\frac{6}{2}[/tex])   +  9    ;

     =       ([tex]\frac{1}{4}[/tex])    3    +  9    ;

Note:   " - 3 + 9 "  =  9 + (-3)  =  9 −  3 =  " 6 " ;  

So:  Rewrite as:

______________________________________________

      →  " ([tex]\frac{1}{4}[/tex]) + 6 "  ;

______________________________________________    

      →   which equals:  " 6 [tex]\frac{1}{4}[/tex] " ;  

_______________________________________________                  

                         or;  write as:  " 6.25 " .

_______________________________________________

Hope this answer —and lengthy explanation — is helpful to you!

       Wishing you the best in your academic endeavors

                 — and within the "Brainly" community!

_______________________________________________