Respuesta :
Answer:
Approximately [tex]83\%[/tex].
Explanation:
How many moles of [tex]\mathrm{CO_2}[/tex] gas are released?
The volume of each mole of of an ideal gas is approximately [tex]\rm 24\;L[/tex] under room temperature and pressure (r.t.p, [tex]\rm 20\;^{\circ}C[/tex], [tex]\rm 1\; \right. atm[/tex].) That's the same as [tex]\rm 24,000\;cm^{2}[/tex].
Assume that [tex]\mathrm{CO_2}[/tex] acts like an ideal gas.
[tex]\displaystyle n(\mathrm{CO_2}) = \rm \frac{100\; cm^{3}}{24,000\; cm^{3}} \approx 0.00416667\; mol[/tex].
[tex]\rm HCl[/tex] is in excess. How many moles of [tex]\mathrm{CaCO_3}[/tex] formula units will produce that [tex]\rm 0.00416667\; mol[/tex] of [tex]\mathrm{CO_2}[/tex]?
Consider the ratio between the coefficient of [tex]\mathrm{CaCO_3}[/tex] and that of [tex]\mathrm{CO_2}[/tex].
[tex]\displaystyle \frac{n(\mathrm{CaCO_3})}{n(\mathrm{CO_2})}=1[/tex].
In other words,
[tex]\displaystyle n(\mathrm{CaCO_3})= n(\mathrm{CO_2})\cdot \frac{n(\mathrm{CaCO_3})}{n(\mathrm{CO_2})} = \rm 0.00416667\; mol[/tex].
What's the mass of that many [tex]\mathrm{CaCO_3}[/tex]?
Relative atomic mass data from a modern periodic table:
- Ca: 40.078;
- C: 12.011;
- O: 15.999.
Formula mass of [tex]\mathrm{CaCO_3}[/tex]:
[tex]M(\mathrm{CaCO_3}) = 40.078+12.011 + 3\times 15.999 =\rm 100.086\; g\cdot mol^{-1}[/tex].
Mass of that [tex]\rm 0.00416667\; mol[/tex] of [tex]\mathrm{CaCO_3}[/tex]:
[tex]m = n \cdot M = \rm 0.00416667 \times 100.086 = 0.417025\; g[/tex].
Percentage mass of [tex]\mathrm{CaCO_3}[/tex] in this sample of chalk:
[tex]\displaystyle \frac{\text{Mass of }\mathrm{CaCO_3}}{\text{Mass of Chalk}} \times 100\%= \rm \frac{0.417025\; g}{0.5\; g} \times 100\%\approx 83\%[/tex].