Answer:
[tex]x=1/4(y-2)^{2}-1[/tex]
Step-by-step explanation:
Use Vertex form: [tex]x=a(y-k)^{2}+h[/tex]
Given: vertek (h, k)=(-1, 2)
[tex]x=a(y-2)^2 -1[/tex]
A point:(x , y) = (3, 6)
[tex]3 = a (6-2)^{2} -1[/tex]
16a=4, a=1/4
The equation is : [tex]x=1/4(y-2)^{2}-1[/tex]