A cylindrical package to be sent by a postal service can have a maximum combined length and girth (perimeter of a cross section) of 144 inches. Find the dimensions of the package of maximum volume that can be sent. (The cross section is circular.)

Respuesta :

Answer:

The dimensions of the package is [tex]r=\frac{48}{\pi}\ \text{and} \ h=48[/tex].

Step-by-step explanation:

Consider the provided information.

As it is given that, cylindrical package to be sent by a postal service can have a maximum combined length and girth is 144 inches.

Therefore,

144 = 2[tex]\pi[/tex]r + h

144-2[tex]\pi[/tex]r = h

The volume of a cylindrical package can be calculated as:

[tex]V=\pi r^{2}h[/tex]

Substitute the value of h in the above equation.

[tex]V=\pi r^{2}(144-2\pi r)[/tex]

Differentiate the above equation with respect to r.

[tex]\frac{dV}{dr}=2\pi r(144-2\pi r)+\pi r^{2}(-2\pi)[/tex]

[tex]\frac{dV}{dr}=288\pi r-4{\pi}^2 r^{2}-2{\pi}^2 r^{2}[/tex]

[tex]\frac{dV}{dr}=288\pi r-6{\pi}^2 r^{2}[/tex]

[tex]\frac{dV}{dr}=-6\pi r(-48+\pi r)[/tex]

Substitute [tex]\frac{dV}{dr}=0[/tex] in above equation.

[tex]0=-6\pi r(-48+\pi r)[/tex]

Therefore,

[tex]0=-48+\pi r[/tex]

[tex]r=\frac{48}{\pi}[/tex]

Now, substitute the value of r in 144-2[tex]\pi[/tex]r = h.

[tex]144-2\pi\frac{48}{\pi}=h[/tex]

[tex]144-96=h[/tex]

[tex]48=h[/tex]

Therefore the dimensions of the package should be:

[tex]r=\frac{48}{\pi}\ \text{and} \ h=48[/tex]

This is about optimization problems in mathematics.

Dimensions; Height = 48 inches; Radius =  48/π inches

  • We are told the combined length and girth is 144 inches.

Girth is same as perimeter which is circumference of the circular side.

Thus; Girth = 2πr

  • If length of cylinder is h, then we have;

2πr + h = 144

h = 144 - 2πr

  • Now, to find the dimensions at which the max volume can be sent;

Volume of cylinder; V = πr²h

Let us put 144 - 2πr for h to get;

V = πr²(144 - 2πr)

V = 144πr² - 2π²r³

Differentiating with respect to r gives;

dV/dr = 288πr - 6π²r²

  • Radius for max volume will be when dV/dr = 0

Thus; 288πr - 6π²r² = 0

Add 6π²r² to both sides to get;

288πr = 6π²r²

Rearranging gives;

288/6 = (π²r²)/πr

48 = πr

r = 48/π inches

  • Put 48/π for r in h = 144 - 2πr to get;

h = 144 - 2π(48/π)

h = 144 - 96

h = 48 inches

Read more at; https://brainly.com/question/12964195