Answer: 0.8023
Step-by-step explanation:
Given : [tex]\text{Mean}=\mu=481 \text{ millimeters}[/tex]
[tex]\text{Standard deviation}=41 \text{ millimeters}[/tex]
Assuming these lengths are normally distributed.
The formula to calculate the z-score is given by :-
[tex]z=\dfrac{x-\mu}{\sigma}[/tex]
For x= [tex]516 \text{ millimeters}[/tex]
[tex]z=\dfrac{516-481}{41}=0.853658536585\approx0.85[/tex]
The p-value = [tex]P(z\leq0.85)=0.8023374\approx0.8023[/tex]
Hence, the required probability : 0.8023