Evaluate the given integral by changing to polar coordinates. sin(x2 + y2) dA R , where R is the region in the first quadrant between the circles with center the origin and radii 2 and 3

Respuesta :

Set

[tex]\begin{cases}x=r\cos\theta\\y=r\sin\theta\end{cases}\implies\mathrm dA=r\,\mathrm dr\,\mathrm d\theta[/tex]

The region [tex]R[/tex] is given in polar coordinates by the set

[tex]R=\left\{(r,\theta)\mid2\le r\le3,0\le\theta\le\dfrac\pi2\right\}[/tex]

So we have

[tex]\displaystyle\iint_R\sin(x^2+y^2)\,\mathrm dA=\int_0^{\pi/2}\int_2^3r\sin(r^2)\,\mathrm dr\,\mathrm d\theta=\boxed{\frac\pi4(\cos4-\cos9)}[/tex]