A solenoid having N turns and carrying a current of 2.000 A has a length of 34 00 cm. If the magnitude of the magnetic field generated at the center of the solenoid is 9.000 mT what is the value of N? (μo = 4π x10^-7 T. m/A) A) 2318 B) 1218 C) 860.0 D) 3183 E) 1591

Respuesta :

Answer:

B) 1218

Explanation:

N = Total number of turns in the solenoid

L = length of the solenoid = 34.00 cm = 0.34 m

B = magnetic field at the center of the solenoid = 9 mT = 9 x 10⁻³ T

i = current carried by the solenoid = 2.000 A

Magnetic field at the center of the solenoid is given as

[tex]B = \frac{\mu _{o}N i}{L}[/tex]

[tex]9\times 10^{-3} = \frac{(4\pi\times 10^{-7} )N (2)}{0.34}[/tex]

N = 1218

The value of N is about B) 1218

[tex]\texttt{ }[/tex]

Further explanation

Let's recall magnetic field strength from current carrying wire and from center of the solenoid as follows:

[tex]\boxed {B = \mu_o \frac{I}{2 \pi d} } [/tex]

B = magnetic field strength from current carrying wire (T)

μo = permeability of free space = 4π × 10⁻⁷ (Tm/A)

I = current (A)

d = distance (m)

[tex]\texttt{ }[/tex]

[tex]\boxed {B = \mu_o \frac{I N}{L} } [/tex]

B = magnetic field strength at the center of the solenoid (T)

μo = permeability of free space = 4π × 10⁻⁷ (Tm/A)

I = current (A)

N = number of turns

L = length of solenoid (m)

Let's tackle the problem now !

[tex]\texttt{ }[/tex]

Given:

Current = I = 2000 A

Length = L = 34.00 cm = 0.34 m

Magnetic field strength = B = 9000 mT = 9 T

Permeability of free space = μo = 4π × 10⁻⁷ T.m/A

Asked:

Number of turns = N = ?

Solution:

[tex]B = \mu_o \frac{I N}{L}}[/tex]

[tex]\frac{I N}{L} = B \div \mu_o[/tex]

[tex]IN = BL \div \mu_o[/tex]

[tex]N = BL \div (\mu_o I)[/tex]

[tex]N = ( 9 \times 0.34 ) \div ( 4 \pi \times 10^{-7} \times 2000 )[/tex]

[tex]\boxed {N \approx 1218}[/tex]

[tex]\texttt{ }[/tex]

Learn more

  • Temporary and Permanent Magnet : https://brainly.com/question/9966993
  • The three resistors : https://brainly.com/question/9503202
  • A series circuit : https://brainly.com/question/1518810
  • Compare and contrast a series and parallel circuit : https://brainly.com/question/539204

[tex]\texttt{ }[/tex]

Answer details

Grade: High School

Subject: Physics

Chapter: Magnetic Field

Ver imagen johanrusli