Answer:
[tex]\Delta E = 8.20 - 4.95 = 3.25 J[/tex]
Explanation:
Initial total mechanical energy is given as
[tex]ME = U + KE[/tex]
here we will have
[tex]U = mgh[/tex]
[tex]U = (0.066)(9.81)(1.05) = 0.68 J[/tex]
also we have
[tex]KE = \frac{1}{2}mv^2[/tex]
[tex]KE = \frac{1}{2}(0.066)(15.1)^2[/tex]
[tex]KE = 7.52 J[/tex]
[tex]ME_i = 0.68 + 7.52 = 8.2 J[/tex]
Now similarly final mechanical energy is given as
[tex]U = mgh[/tex]
[tex]U = (0.066)(9.81)(1.59) = 1.03 J[/tex]
also we have
[tex]KE = \frac{1}{2}mv^2[/tex]
[tex]KE = \frac{1}{2}(0.066)(10.9)^2[/tex]
[tex]KE = 3.92 J[/tex]
[tex]ME_f = 1.03 + 3.92 = 4.95 J[/tex]
Now change in mechanical energy is given as
[tex]\Delta E = ME_i - ME_f[/tex]
[tex]\Delta E = 8.20 - 4.95 = 3.25 J[/tex]