Respuesta :

Answer:

[tex]\frac{2-\frac{1}{y} }{3+\frac{1}{y} }[/tex] is equivalent to [tex]\frac{2y-1}{3y-1}[/tex]

Step-by-step explanation:

The given expression is :[tex]\frac{2-\frac{1}{y} }{3+\frac{1}{y} }[/tex].

We collect LCM in both the numerator and the denominator to obtain:

[tex]\frac{\frac{2y-1}{y} }{\frac{3y-1}{y} }[/tex]

Change to the normal division sign;

[tex]\frac{2y-1}{y} \div \frac{3y-1}{y}[/tex]

Multiply by the reciprocal of the second fraction:

[tex]\frac{2y-1}{y} \times \frac{y}{3y-1}[/tex]

Cancel out the common factors

[tex]\frac{2y-1}{3y-1}[/tex]

Therefore [tex]\frac{2-\frac{1}{y} }{3+\frac{1}{y} }[/tex] is equivalent to [tex]\frac{2y-1}{3y-1}[/tex]

Answer:

d) 2y-1 / 3y+1

Step-by-step explanation:

just took the quiz on edge