Respuesta :
Answer:
[tex]\frac{2-\frac{1}{y} }{3+\frac{1}{y} }[/tex] is equivalent to [tex]\frac{2y-1}{3y-1}[/tex]
Step-by-step explanation:
The given expression is :[tex]\frac{2-\frac{1}{y} }{3+\frac{1}{y} }[/tex].
We collect LCM in both the numerator and the denominator to obtain:
[tex]\frac{\frac{2y-1}{y} }{\frac{3y-1}{y} }[/tex]
Change to the normal division sign;
[tex]\frac{2y-1}{y} \div \frac{3y-1}{y}[/tex]
Multiply by the reciprocal of the second fraction:
[tex]\frac{2y-1}{y} \times \frac{y}{3y-1}[/tex]
Cancel out the common factors
[tex]\frac{2y-1}{3y-1}[/tex]
Therefore [tex]\frac{2-\frac{1}{y} }{3+\frac{1}{y} }[/tex] is equivalent to [tex]\frac{2y-1}{3y-1}[/tex]
Answer:
d) 2y-1 / 3y+1
Step-by-step explanation:
just took the quiz on edge