Which of the following functions gives the length of the base edge, a(v), of a right square pyramid that is 8 inches tall as a function of its volume, v, in
cubic inches?

Respuesta :

gmany

Answer:

[tex]\large\boxed{a(V)=\sqrt{\dfrac{3V}{8}}}[/tex]

Step-by-step explanation:

The formula of a volume of a square pyramid:

[tex]V=\dfrac{1}{3}a^2h[/tex]

a - base edge

h - height of a pyramid

We have H = 8in.

Substitute and solve for a:

[tex]\dfrac{1}{3}a^2(8)=V\\\\\dfrac{8}{3}a^2=V\qquad\text{multiply both sides by}\ \dfrac{3}{8}\\\\\dfrac{3\!\!\!\!\diagup^1}{8\!\!\!\!\diagup_1}\cdot\dfrac{8\!\!\!\!\diagup^1}{3\!\!\!\!\diagup_1}a^2=\dfrac{3}{8}V\\\\a^2=\dfrac{3V}{8}\Rightarrow a=\sqrt{\dfrac{3V}{8}}[/tex]

Answer:

Answer:

Step-by-step explanation:

The formula of a volume of a square pyramid:

a - base edge

h - height of a pyramid

We have H = 8in.

Substitute and solve for a:

diavinad8 and 53 more users found this answer helpful

Step-by-step explanation: