Respuesta :

MattPL

Answer:

[tex]12x^8+15x^7-8x^6-10x^5[/tex]

Step-by-step explanation:

Start by using the FOIL method on your second and third terms.

[tex](3x^2-2)(4x^2+5x)\\12x^4+15x^3-8x^2-10x[/tex]

Next, multiply the first term ([tex]x^4[/tex]) against your result.

[tex]x^4(12x^4+15x^3-8x^2-10x)\\12x^8+15x^7-8x^6-10x^5[/tex]

For this case we must find the product of the following expression:[tex](x ^ 4) (3x ^ 2-2) (4x ^ 2 5x) =[/tex]

We must bear in mind that to multiply powers of the same base, the same base is placed and the exponents are added:

Multiplying the terms of the first two parentheses, applying distributive property we have:

[tex](x ^ 4 * 3x ^ 2-x ^ 4 * 2) (4x ^ 2 5x) =\\(3x ^ 6-2x ^ 4) (4x ^ 2 5x) =\\3x ^ 6 * 4x ^ 2 3x ^ 6 * 5x-2x ^ 4 * 4x ^ 2-2x ^ 4 * 5x =\\12x ^ 8 15x ^ 7-8x ^ 6-10x ^ 5[/tex]

Answer:

The product is: [tex]12x ^ 8 15x ^ 7-8x ^ 6-10x ^ 5[/tex]