Respuesta :
Answer:
[tex]V=(\frac{1}{2}x^{3}+x^{2})\ units^{2}[/tex]
Step-by-step explanation:
we know that
The volume of the oblique prism is equal to
[tex]V=BH[/tex]
where
B is the area of the base
H is the height of the prism
Find the area of the triangular base
The area B is equal to
[tex]B=\frac{1}{2}x^{2}\ units^{2}[/tex]
[tex]H=(x+2)\ units[/tex] ---> the height must be perpendicular to the base
substitute
[tex]V=(\frac{1}{2}x^{2})(x+2)[/tex]
[tex]V=(\frac{1}{2})(x^{3}+2x^{2})[/tex]
[tex]V=(\frac{1}{2}x^{3}+x^{2})\ units^{2}[/tex]