You are told that a sample of size 225 the mean is 48.5 and the standard deviation is 1.8 the study is reported with 90% confidence level explain how to determine if 48.8 is within the confidence interval

Respuesta :

Answer with explanation:

Size of the sample = n =225

Mean[\text] \mu[/text]=48.5

Standard deviation [\text] \sigma[/text]= 1.8

[tex]Z_{90 \text{Percent}}=Z_{0.09}=0.5359\\\\Z_{score}=\frac{\Bar X -\mu}{\frac{\sigma}{\sqrt{\text{Sample size}}}}\\\\0.5359=\frac{\Bar X -48.5}{\frac{1.8}{\sqrt{225}}}\\\\0.5359=15 \times \frac{\Bar X -48.5}{1.8}\\\\0.5359 \times 1.8=15 \times (\Bar X -48.5)\\\\0.97=15 \Bar X-727.5\\\\727.5+0.97=15 \Bar X\\\\728.47=15 \Bar X\\\\ \Bar X=\frac{728.47}{15}\\\\\Bar X=48.57[/tex]

→Given Confidence Interval of Mean =48.8

→Calculated Mean of Sample =48.57 < 48.8

So, the value of Sample mean lies within the confidence interval.

Answer:

sample answer

Step-by-step explanation:

To find the margin of error, multiply the z-score by the standard deviation, then divide by the square root of the sample size.

The z*-score for a 90% confidence level is 1.645.

The margin of error is 0.20.

The confidence interval is 48.3 to 48.7.

48.8 is not within the confidence interval.